Trout foodstuff matrix influences digestion and bioavailability associated with longchain omega3 polyunsaturated efas

From Informatic
Jump to navigation Jump to search

This study provides new insights into the impact of protein sources on IF digestibility. Globally, the bakery industry has a target of reducing sodium content in bread products. However, removing salt results in changes in the quality of bread through effects on dough's gas phase during the breadmaking process. Using synchrotron X-ray microtomography, the objective of this study was to investigate how sodium reduction induced changes in the gas phase parameters (i.e., gas volume fraction, bubble size distribution (BSD) and its time evolution) of non-yeasted doughs made from a wide range of formulations (i.e., wheat cultivar and water content) prepared with different mixing times. As salt content was reduced, a lower gas volume was retained in the dough by the end of mixing. Less gas bubbles were also retained if doughs were prepared from a stronger wheat cultivar, higher water content, and/or mixed for a shorter time. Rates of change in the median (R0) and the width (ε) of the fitted lognormal radius dependence of bubble volume fraction [BVF(R)] indicated that reduced sodium content permitted disproportionation to proceed more rapidly. Higher water content or longer mixing time also resulted in faster disproportionation, indicating that water content and mixing time can be manipulated as a means of increasing bubble stability against disproportionation during low-sodium breadmaking. An examination of relative changes in dough's gas phase parameters arising from sodium reduction demonstrated that wheat cultivar, water content and mixing time all affected dough's tolerance to sodium reduction. Therefore, attainment of good bread crumb cell structure in low-sodium bread formulas is a function of salt's effects on dough rheology in addition to its effect on yeast activity, so that dough formulation and mixing conditions also need to be considered. The effects of seaweed applications to grapevines on grape and wine volatile composition are currently unknown. this website The aim of this work was to study the influence of seaweed foliar applications (Ascophyllum nodosum) to a Tempranillo blanco vineyard on grape and wine volatile composition. A low (Ld) and a high dosage (Hd) of the seaweed fertilizer was applied in two consecutive seasons (2017-2018). The most abundant family of varietal volatile compounds in Tempranillo blanco grapes was C13 norisoprenoid. Hd treatment tended to increase the concentration of certain C6 compounds in grapes in both seasons, whereas Ld application tended to decrease 2-phenylethanol and 2-phenylethanal content in grapes with a season dependence. Season factor affected to the concentration of most of the volatile compounds in grapes due to the differences on rainfall, which affected to the weight of 100 berries and physico-chemical parameters. Yeast assimilable nitrogen (YAN) in musts could have affected the concentration of most of the wine volatile compounds. According to odor activity values (OAV), Tempranillo blanco wines were characterized as floral, fruity, banana, pear, among others aroma compounds. Acerola cherry (Malpighia emarginata D.C.) is a tropical fruit of great economic and nutritional value due to its high content of vitamin C. However, there is little information available about which ripening stage of Acerola cherry can provide the best nutrients. In the current study, the chemical variation at two developmental stages (immature and mature) were investigated by metabolic profiling, and the biological properties of Acerola cherry and its antioxidant assays at four developmental stages were measured, respectively. Through comprehensive metabolites analysis via ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry system (UPLC-QTOF), 1896 annotated metabolite features were obtained, and 133 metabolites were finally identified according to the MS/MS fragments compared with these standards in in-house database. Statistically differences in the levels of amino acids, flavonoids, lipids, terpenoids and ascorbic acids were found between mature and immature fruits. Interestingly, most of differential accumulated amino acids, flavonoids, lipids, and terpenoids predominantly accumulated in the mature fruits and ascorbic acid predominantly accumulated in the immature fruits. On the other hand, their antioxidant activities were compared. The alcoholic extract of immature acerola fruit possessed better scavenging ability of DPPH and ABTS than the mature one. The well correlations were found between the antioxidant potential with its content of ascorbic acid (r = 0.9803 and 0.9897, respectively). In conclusion, Acerola cherry showed very different metabolite profile and antioxidant activities during the fruit ripening development. The maturity of Acerola cherry has to be considered when it is being used for health food products. Bread wheat (Triticum aestivum L.) is one of the crucial cereals consumed by human beings and wheat gluten, the natural macromolecules, mainly determines the processing quality of wheat dough. The high-molecular-weight glutenin subunits (HMW-GSs) of gluten proteins are recognized as one of the main components regulating the rheological properties of dough. The overexpressed Bx7 subunit (Bx7OE) has been reported to improve wheat quality and rheological properties of dough, however its effect on secondary and micro- structures of gluten is still unclear. In this study, we evaluated the composition of main storage proteins in wheat grains of two near-isogenic lines and studied the effect of Bx7 subunit expression level on the secondary structures of gluten and micro-structure of gluten during dough mixing process. Results showed the protein content, HMW-GSs proportion in total glutenins and free sulfhydryl content increased in the flour of HMW-Bx7OE wheat line, and the accumulation of unextractable polymeric protein during grain filling stage accelerated. It was found that the content of β-sheets in secondary structures of gluten increased and a more compact micro-structure of gluten network formed in the dough. Protein network analysis characterized and quantified the alterations in the gluten micro-structure. In the process of dough mixing, protein area, total protein length, number of junctions and branching rate reach the peak at dough development time, which was consistent with Chopin mixing profile. Interestingly, during dough mixing, the above-mentioned parameters of HMW-Bx7OE showed less changes than those of HMW-Bx7 wheat line, indicating Bx7OE improved the dough stability during mixing. To conclude, Bx7OE alters the secondary and micro- structures of gluten and thus improves the mixing and rheological properties of wheat dough.