Toward Powerful LiS Batteries by means of SulfonateRich COFModified Separator
Moreover, the mechanism studies in vivo found that HSP inhibited PI3K/Akt signaling pathway with low side effects. These findings indicate that RA micelle formulations have great potential in oral drug delivery systems for the delivery of hydrophobic drugs.N-methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels that support essential functions throughout the brain. NMDARs are tetramers composed of the GluN1 subunit in complex with GluN2- and GluN3-type regulatory subunits, resulting in the formation of various receptor subtypes throughout the central nervous system (CNS), characterised by different kinetics, biophysical and pharmacological properties, and the abilities to interact with specific partners at dendritic spines. NMDARs are expressed at high levels, are widely distributed throughout the brain, and are involved in several physiological and pathological conditions. Here, we will focus on the GluN2A- and GluN2B-containing NMDARs found at excitatory synapses and their interactions with plasticity-relevant proteins, such as the postsynaptic density family of membrane-associated guanylate kinases (PSD-MAGUKs), Ca2+/calmodulin-dependent kinase II (CaMKII) and synaptonuclear protein messengers. The dynamic interactions between NMDAR subunits and various proteins regulating synaptic receptor retention and synaptonuclear signalling mediated by protein messengers suggest that the NMDAR serves as a key molecular player that coordinates synaptic activity and cell-wide events that require gene transcription. Importantly, protein-protein interactions at the NMDAR complex can also contribute to synaptic dysfunction in several brain disorders. Therefore, the modulation of the molecular composition of the NMDAR complex might represent a novel pharmacological approach for the treatment of certain disease states.This study was aimed to evaluate the effects of sertraline (STR) and/or naltrexone (NTX) on ethanol consumption and motivation in an animal model of post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD). Male C57BL/6J mice were submitted to an intermittent and progressively increasing stressful stimuli simulating PTSD behavioural features. Behavioural alterations were explored by the fear conditioning (FC), novelty suppressed feeding test (NSFT) and acoustic startle response (ASR) paradigms. Afterwards, mice were evaluated in the voluntary ethanol consumption (VC) and the oral ethanol self-administration (OEA) paradigms. The effects of STR (10 mg/kg) and/or NTX (0.7 mg/kg) on ethanol consumption and motivation were analysed in the OEA. Furthermore, relative gene expression analyses of tyrosine hydroxylase (Th), mu-opioid receptor (Oprm1) and 5-hydroxitryptamine transporter (Slc6a4) were performed in the ventral tegmental area (VTA), nucleus accumbens (NAcc) and dorsal raphe nucleus (DR), respectively. PTSD-like mice presented increased fear-related memory, anxiety-like behaviours, and startle response, as well as enhanced ethanol consumption and motivation in the VC and OEA paradigms. Interestingly, STR plus NTX combination significantly reduced ethanol intake and motivation in the OEA. Gene expression analyses revealed reduced Th and Oprm1 whereas Slc6a4 gene expression increased in PTSD-like mice. STR and/or NTX modulated Th and Slc6a4 gene expression changes in PTSD-like mice. Furthermore, NTX increased Oprm1 gene expression revealing a synergistic action when combined with STR. These results provide evidence about the efficacy of the STR plus NTX to attenuate ethanol reinforcement and motivation in an animal model of PTSD and AUD dual pathology.
Pulmonary hypertension (PH) is a pathophysiological syndrome with functional abnormalities of the pulmonary artery and heart, eventually becoming life threatening to the patients. Autophagy-related gene 7 (ATG)-7 is involved in many cardiovascular diseases, but little is known about the specific role of ATG-7 in the development of PH. We aimed to examine the expression of ATG-7 in PH patients and PH mice, specifically investigate pulmonary physiological responses in a mouse model with conditional deletion of ATG-7 in smooth muscle cells (SMCs) and further clarify the mechanism of PH caused by ATG-7 deficiency.
SMC-ATG-7
mice underwent echocardiography and subsequent pulmonary arterial pressure (PAP) checks. The PAP was lower in wild-type (WT) mice (22.6±2.0mmHg) than knockout (KO) mice (34.0±2.5mmHg; p<0.001). SR1antagonist Pulmonary artery resistance was increased in KO (17.61±2.03mm
·s
) versus WT mice (8.91±1.62mm
·s
; p<0.005). Combined with these statistics, SMC-ATG7
mice were diagnosed with PH. The increase of ATG-7 expression in vessels from PH patients and PH mice were assessed and the effects of ATG-7 on vascular remodeling were investigated in SMCs using relevant methods. We also identified silencing ATG-7 in SMCs induced the increased level of Ca
and abnormal proliferation through PP2A/ 4EBP-1/ elf-4E pathway.
ATG-7 affects vascular remodeling and exerts a protective function during the pathogenesis of PH. Our study revealed a novel mechanism ATG-7 deficiency promotes cell proliferation via the interaction between PP2A, 4EBP-1 and elf-4E.
ATG-7 affects vascular remodeling and exerts a protective function during the pathogenesis of PH. Our study revealed a novel mechanism ATG-7 deficiency promotes cell proliferation via the interaction between PP2A, 4EBP-1 and elf-4E.
To evaluate the association between pairs of natural teeth and nutritional status among older adults.
This cross-sectional study evaluated a total of 569 home-dwelling adults from two southern Brazilian cities aged ≥60 years. Present teeth were counted, and pairs of natural teeth were defined as antagonistic teeth. Nutritional status was assessed using Mini Nutritional Assessment. Sociodemographic, behavioral, medical and dental history were collected. Sample was dichotomized into well-nourished and at nutritional risk (including at risk of malnutrition and malnourished). Multiple multivariate models were performed considering different categorizations of pairs of natural teeth.
For each number of present teeth, a decrease of 1.8 % in the prevalence ratio (PR) for nutritional risk was detected (p = 0.040). For each pair of natural teeth, there was 4.4 % decrease in PR for nutritional risk (95 % confidence interval [95 % CI] 0.917 - 0.997). No statistically significant association was found for pairs of natural anterior teeth (p = 0.