The entire chloroplast genome regarding weedy almond Oryza sativa p oker spontanea

From Informatic
Jump to navigation Jump to search

The present paper introduces a numerical calibration method for the easy and practical implementation of multiple spectrometer-based spectral-domain optical coherence tomography (SD-OCT) systems. RK-33 supplier To address the limitations of the traditional hardware-based spectrometer alignment across more than one spectrometer, we applied a numerical spectral calibration algorithm where the pixels corresponding to the same wavelength in each unit are identified through spatial- and frequency-domain interferometric signatures of a mirror sample. The utility of dual spectrometer-based SD-OCT imaging is demonstrated through in vivo retinal imaging at two different operation modes with high-speed and dual balanced acquisitions, respectively, in which the spectral alignment is critical to achieve improved retinal image data without any artifacts caused by misalignment of the spectrometers.Vitreous cortex hyalocytes are resident macrophage cells that help maintain the transparency of the media, provide immunosurveillance, and respond to tissue injury and inflammation. In this study, we demonstrate the use of non-confocal quadrant-detection adaptive optics scanning light ophthalmoscopy (AOSLO) to non-invasively visualize the movement and morphological changes of the hyalocyte cell bodies and processes over 1-2 hour periods in the living human eye. The average velocity of the cells 0.52 ± 0.76 µm/min when sampled every 5 minutes and 0.23 ± 0.29 µm/min when sampled every 30 minutes, suggesting that the hyalocytes move in quick bursts. Understanding the behavior of these cells under normal physiological conditions may lead to their use as biomarkers or suitable targets for therapy in eye diseases such as diabetic retinopathy, preretinal fibrosis and glaucoma.Recently proposed time-gated diffuse correlation spectroscopy (TG-DCS) has significant advantages compared to conventional continuous wave (CW)-DCS, but it is still in an early stage and clinical capability has yet to be established. The main challenge for TG-DCS is the lower signal-to-noise ratio (SNR) when gating for the deeper traveling late photons. Longer wavelengths, such as 1064 nm have a smaller effective attenuation coefficient and a higher power threshold in humans, which significantly increases the SNR. Here, we demonstrate the clinical utility of TG-DCS at 1064 nm in a case study on a patient with severe traumatic brain injury admitted to the neuro-intensive care unit (neuroICU). We showed a significant correlation between TG-DCS early (ρ = 0.67) and late (ρ = 0.76) gated against invasive thermal diffusion flowmetry. We also analyzed TG-DCS at high temporal resolution (50 Hz) to elucidate pulsatile flow data. Overall, this study demonstrates the first clinical translation capability of the TG-DCS system at 1064 nm using a superconducting nanowire single-photon detector.Herein, to investigate a new diagnostic method for Meibomian gland dysfunction (MGD) induced by eyelid inflammation, optical properties and deoxy-hemoglobin (Hb) concentrations in rodent eyelid tissues, including Meibomian glands(MGs), were measured using spatial frequency domain imaging (SFDI). Complete Freund's adjuvant solutions were injected into the eyelid margins of Sprague-Dawley rats to induce MGD. After three weeks, the optical properties and Hb of the MG and non-MG regions of the eyelids were measured ex-vivo using an SFDI system. The comparison of Hb showed that the MGD group exhibited significantly higher values than those of the control group in both regions. The optical properties at 730 and 850 nm for the MG regions in the MGD group were significantly different from those in the control group. In addition, the 630 nm absorption coefficients of both regions were significantly higher in the MGD group than in the control group. Thus, the SFDI technique can detect the increased Hb concentration and changes in the optical properties of the eyelids due to inflammatory MGD in a noncontact manner and has the potential to be used as a novel quantitative diagnostic method for the occurrence of MGD.We demonstrate a simple, low-cost two-photon microscope design with both galvo-galvo and resonant-galvo scanning capabilities. We quantify and compare the signal-to-noise ratios and imaging speeds of the galvo-galvo and resonant-galvo scanning modes when used for murine neurovascular imaging. The two scanning modes perform as expected under shot-noise limited detection and are found to achieve comparable signal-to-noise ratios. Resonant-galvo scanning is capable of reaching desired signal-to-noise ratios using less acquisition time when higher excitation power can be used. Given equal excitation power and total pixel dwell time between the two methods, galvo-galvo scanning outperforms resonant-galvo scanning in image quality when detection deviates from being shot-noise limited.Memory shortness, verbal influence, and disturbed attention are a few of the cognitive dysfunctions reported by individuals of bipolar disorder in depression phase (BD-D). As neuroimaging modalities can investigate such responses, therefore neuroimaging methods can be used to assist the diagnosis of bipolar disorder (BD). Functional near-infrared spectroscopy (fNIRS) is a neural imaging method that is proved to be prominent in the diagnosis of psychiatric disorders. It is the desired method because of its feasible setup, high resolution in time, and its partial resistance to head movements. This study aims to investigate the brain activity in subjects of BD-D during cognitive tasks compared to the healthy controls. A decreased activation level is expected in individuals of BD-D as compared to the healthy controls. This study aims to find new methods and experimental paradigms to assist in the diagnosis of bipolar depression. Participants of BD-D and healthy controls (HC) performed four cognitive tasks includicific dysfunctions. Compared with other cognitive tasks, the single-trial symbol-check task may be more suitable to help the diagnosis of bipolar depression.Multimodal microscopy combines multiple non-linear techniques that take advantage of different optical processes to generate contrast and increase the amount of information that can be obtained from biological samples. However, the most advanced optical architectures are typically custom-made and often require on-site adjustment of optical components performed by trained personnel for optimal performance. Here, we describe a hybrid system we built based on a commercial upright microscope. We show that our multimodal imaging platform can be used to seamlessly perform two-photon STED, wavelength mixing and label-free microscopy in both ex vivo and in vivo turbid samples. The system is stable and endowed with remote alignment hardware that ensures long-term operability also for non-expert users, using the alignment protocol described in this article and in the related material. This optical architecture is an important step forward towards a wider practical applicability of non-linear optics to bioimaging.We propose a system for monitoring an enzymatic reaction, i.e., dehydrogenation of ethanol catalyzed by alcohol dehydrogenase, in microdroplets using ultra-broadband multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy. The reaction solution was encapsulated in water-in-oil microdroplets with diameters of 50 µm. The reaction was monitored by measuring the concentration of coenzymes from the CARS spectrum obtained in one-second exposure time. The results obtained using our system was consistent with those of the conventional fluorescence measurement system and indicate the potential of CARS spectroscopy for droplet-based high-throughput screening of enzymes.While numerous transgenic mouse strains have been produced to model the formation of amyloid-β (Aβ) plaques in the brain, efficient methods for whole-brain 3D analysis of Aβ deposits have to be validated and standardized. Moreover, routine immunohistochemistry performed on brain slices precludes any shape analysis of Aβ plaques, or require complex procedures for serial acquisition and reconstruction. The present study shows how in-line (propagation-based) X-ray phase-contrast tomography (XPCT) combined with ethanol-induced brain sample dehydration enables hippocampus-wide detection and morphometric analysis of Aβ plaques. Performed in three distinct Alzheimer mouse strains, the proposed workflow identified differences in signal intensity and 3D shape parameters 3xTg displayed a different type of Aβ plaques, with a larger volume and area, greater elongation, flatness and mean breadth, and more intense average signal than J20 and APP/PS1. As a label-free non-destructive technique, XPCT can be combined with standard immunohistochemistry. XPCT virtual histology could thus become instrumental in quantifying the 3D spreading and the morphological impact of seeding when studying prion-like properties of Aβ aggregates in animal models of Alzheimer's disease. This is Part II of a series of two articles reporting the value of in-line XPCT for virtual histology of the brain; Part I shows how in-line XPCT enables 3D myelin mapping in the whole rodent brain and in human autopsy brain tissue.We carried out a systematic study on cross-polarized diffraction image (p-DI) pairs of 3098 mature red blood cells (RBCs) using optical cell models with varied morphology, refractive index (RI), and orientation. The influence of cell rotation on texture features of p-DI pairs characterized by the gray-level co-occurrence matrix (GLCM) algorithm was quantitatively analyzed. Correlations between the transverse diameters of RBCs with different RI values and scattering efficiency ratios of s- and p-polarized light were also investigated. The correlations remain strong even for RBCs with significant orientation variations. In addition, we applied a minimum redundancy maximum relevance (mRMR) algorithm to improve the performance of support vector machine (SVM) classifiers. It was demonstrated that a set of selected GLCM parameters allowed for an efficient solution of classification problems of RBCs based on morphology. For 1598 RBCs with varied shapes corresponding to normal or pathological cases, the accuracy of the SVM based classifications increased from 83.8% to 96.8% with the aid of mRMR. These results indicate the strong potential of p-DI data for rapid and accurate screening examinations of RGC shapes in routine clinical tests.Optical imaging techniques that provide free space, label free imaging are powerful tools in obtaining structural and biochemical information in biological samples. To date, most of the optical imaging technologies create images with a specific contrast and require multimodality integration to add additional contrast. In this study, we demonstrate spectroscopic Thermo-elastic Optical Coherence Tomography (TE-OCT) as a potential tool in tissue identification. TE-OCT creates images based on two different forms of contrast optical reflectance and thermo-elastic deformation. TE-OCT uses short laser pulses to induce thermo-elastic tissue deformation and measures the resulting surface displacement using phase-sensitive OCT. In this work we characterized the relation between thermo-elastic displacement and optical absorption, excitation, fluence and illumination area. The experimental results were validated with a 2-dimensional analytical model. Using spectroscopic TE-OCT, the thermo-elastic spectra of elastic phantoms and tissue components in coronary arteries were extracted.