Superior Electroplasticity by way of RoomTemperature Dynamic Recrystallization inside a Mg3Al1Sn1Zn Blend

From Informatic
Jump to navigation Jump to search

We developed an efficient acylative kinetic resolution of 3-hydroxy-3-substituted 2-oxindoles by a chiral DMAP derivative having a 1,1'-binaphthyl with two tert-alcohols units. A wide range of 3-hydroxy-3-substituted oxindoles having various functional groups were efficiently resolved (14 examples, up to s = 60) in the presence of 1 mol % of catalyst within 3-9 h. Multigram-scale reactions (10 g) also proceeded with a high s-factor (s = 43) within 5 h.We report an iron system, Cp*Fe(1,2-R2PC6H4X), which controls the Markovnikov and anti-Markovnikov hydrostannation of alkynes by tuning the ionic metal-heteroatom bonds (Fe-X) reactivity. The sequential addition of nBu3SnH to the iron-amido catalyst (1, X = HN-, R = Ph) affords a distannyl Fe(IV)-H species responsible for syn-addition of the Sn-H bond across the C≡C bond to produce branched α-vinylstannanes. Activation of the C(sp)-H bond of alkynes by an iron-aryloxide catalyst (2, X = O-, R = Cy) affords an iron(II) vinylidene intermediate, allowing for gem-addition of the Sn-H to the terminal-carbon producing β-vinylstannanes. These catalytic reactions exhibit excellent regioselectivity and broad functional group compatibility and enable the large-scale synthesis of diverse vinylstannanes. Many new reactions have been established based on such a synthetic Fe-X platform to demonstrate that the initial step of the catalysis is conveniently controlled by the activation of either the tin hydride or the alkyne substrate.Mixed-anion inorganic compounds offer diverse functionalities as a function of the different physicochemical characteristics of the secondary anion. The quaternary metal oxynitrides, which originate from substituting oxygen anions (O2-) in a parent oxide by nitrogen (N3-), are encouraging candidates for photoelectrochemical (PEC) water splitting because of their suitable and adjustable narrow band gap and relative negative conduction band (CB) edge. Given the known photochemical activity of LaTiO2N, we investigated the paramagnetic counterpart NdTiO2+xN1-x. The electronic structure was explored both experimentally and theoretically at the density functional theory (DFT) level. A band gap (Eg) of 2.17 eV was determined by means of ultraviolet-visible (UV-vis) spectroscopy, and a relative negative flat band potential of -0.33 V vs reversible hydrogen electrode (RHE) was proposed via Mott-Schottky measurements. 14N solid state nuclear magnetic resonance (NMR) signals from NdTiO2+xN1-x could not be detected, which indicates that NdTiO2+xN1-x is berthollide, in contrast to other structurally related metal oxynitrides. Although the bare particle-based photoanode did not exhibit a noticeable photocurrent, Nb2O5 and CoO x overlayers were deposited to extract holes and activate NdTiO2+xN1-x. Multiple electrochemical methods were employed to understand the key features required for this metal oxynitride to fabricate photoanodes.The organization of molecular motors in supramolecular assemblies to allow the amplification and transmission of motion and collective action is an important step toward future responsive systems. Metal-coordination-driven directional self-assembly into supramolecular metallacycles provides a powerful strategy to position several motor units in larger structures with well-defined geometries. Herein, we present a pyridyl-modified molecular motor ligand (MPY) which upon coordination with geometrically distinct di-Pt(II) acceptors assembles into discrete metallacycles of different sizes and shapes. This coordination leads to a red-shift of the absorption bands of molecular motors, making these motorized metallacycles responsive to visible light. Photochemical and thermal isomerization experiments demonstrated that the light-driven rotation of the motors in the metallacycles is similar to that in free MPY in solution. CD studies show that the helicity inversions associated with each isomerization step in the rotary cycle are preserved. To explore collective motion, the trimeric motor-containing metallacycle was aggregated with heparin through multiple electrostatic interactions, to construct a multi-component hierarchical system. SEM, TEM, and DLS measurements revealed that the photo- and thermal-responsive molecular motor units enabled selective manipulation of the secondary supramolecular aggregation process without dissociating the primary metallacycle structures. These visible-light-responsive metallacycles, with intrinsic multiple rotary motors, offer prospects for cooperative operations, dynamic hierarchical self-assembled systems, and adaptive materials.Experimental evidence suggests that DNA-mediated redox signaling between high-potential [Fe4S4] proteins is relevant to DNA replication and repair processes, and protein-mediated charge transfer (CT) between [Fe4S4] clusters and nucleic acids is a fundamental process of the signaling and repair mechanisms. We analyzed the dominant CT pathways in the base excision repair glycosylase MutY using molecular dynamics simulations and hole hopping pathway analysis. selleck chemical We find that the adenine nucleobase of the mismatched A·oxoG DNA base pair facilitates [Fe4S4]-DNA CT prior to adenine excision by MutY. We also find that the R153L mutation in MutY (linked to colorectal adenomatous polyposis) influences the dominant [Fe4S4]-DNA CT pathways and appreciably decreases their effective CT rates.Composite cryogels containing boronic acid ligands are synthesized for effective separation and isolation of bacteria. The large and interconnected pores in cryogels enable fast binding and release of microbial cells. To control bacterial binding, an alkyne-tagged boronic acid ligand is conjugated to azide-functionalized cryogel via the Cu(I)-catalyzed azide-alkyne cycloaddition reaction. The boronic acid-functionalized cryogel binds Gram-positive and Gram-negative bacteria through reversible boronate ester bonds, which can be controlled by pH and simple monosaccharides. To increase the capacity of affinity separation, a new approach is used to couple the alkyne-tagged phenylboronic acid to cryogel via an intermediate polymer layer that provides multiple immobilization sites. The morphology and chemical composition of the composite cryogel are characterized systematically. The capability of the composite cryogel for the separation of Gram-positive and Gram-negative bacteria is investigated. The binding capacities of the composite cryogel for Escherichia coli and Staphylococcus epidermidis are 2.