Regulation of Ferroptosis Pathway simply by Ubiquitination

From Informatic
Jump to navigation Jump to search

Adsorption of one-third monolayer of Sn on an atomically clean Si(111) substrate produces a two-dimensional triangular adatom lattice with one unpaired electron per site. This dilute adatom reconstruction is an antiferromagnetic Mott insulator; however, the system can be modulation doped and metallized using heavily doped p-type Si(111) substrates. Here, we show that the hole-doped dilute adatom layer on a degenerately doped p-type Si(111) wafer is superconducting with a critical temperature of 4.7±0.3  K. While a phonon-mediated coupling scenario would be consistent with the observed T_c, Mott correlations in the Sn-derived dangling-bond surface state could suppress the s-wave pairing channel. The latter suggests that the superconductivity in this triangular adatom lattice may be unconventional.Solids built out of active components can exhibit nonreciprocal elastic coefficients that give rise to non-Hermitian wave phenomena. Here, we investigate non-Hermitian effects present at the boundary of two-dimensional active elastic media obeying two general assumptions their microscopic forces conserve linear momentum and arise only from static deformations. Using continuum equations, we demonstrate the existence of the non-Hermitian skin effect in which the boundary hosts an extensive number of localized modes. Furthermore, lattice models reveal non-Hermitian topological transitions mediated by exceptional rings driven by the activity level of individual bonds.We introduce the resource quantifier of weight of resource for convex quantum resource theories of states and measurements with arbitrary resources. We show that it captures the advantage that a resourceful state (measurement) offers over all possible free states (measurements) in the operational task of exclusion of subchannels (states). Furthermore, we introduce information-theoretic quantities related to exclusion for quantum channels and find a connection between the weight of resource of a measurement and the exclusion-type information of quantum-to-classical channels. Our results apply to the resource theory of entanglement in which the weight of resource is known as the best-separable approximation or Lewenstein-Sanpera decomposition introduced in 1998. Consequently, the results found here provide an operational interpretation to this 21-year-old entanglement quantifier.In the standard model of particle physics, the weak interaction is described by vector and axial-vector couplings only. Nonzero scalar or tensor interactions would imply an additional contribution to the differential decay rate of the neutron, the Fierz interference term. We derive a limit on this hypothetical term from a measurement using spin-polarized neutrons. This method is statistically less sensitive than the determination from the spectral shape but features much cleaner systematics. We obtain a limit of b=0.017(21) at 68.27% C.L., improving the previous best limit from neutron decay by a factor of four.Field theoretic simulations are used to predict the equilibrium phase diagram of symmetric blends of AB diblock copolymer with A- and B-type homopolymers. Experiments generally observe a channel of bicontinuous microemulsion (BμE) separating the ordered lamellar (LAM) phase from coexisting homopolymer-rich (A+B) phases. However, our simulations find that the channel is unstable with respect to macrophase separation, in particular, A+B+BμE coexistence at high T and A+B+LAM coexistence at low T. The preference for three-phase coexistence is attributed to a weak attractive interaction between diblock monolayers.Elucidating the carrier density at which strongly bound excitons dissociate into a plasma of uncorrelated electron-hole pairs is a central topic in the many-body physics of semiconductors. However, there is a lack of information on the high-density response of excitons absorbing in the near-to-mid ultraviolet, due to the absence of suitable experimental probes in this elusive spectral range. Here, we present a unique combination of many-body perturbation theory and state-of-the-art ultrafast broadband ultraviolet spectroscopy to unveil the interplay between the ultraviolet-absorbing two-dimensional excitons of anatase TiO_2 and a sea of electron-hole pairs. We discover that the critical density for the exciton Mott transition in this material is the highest ever reported in semiconductors. These results deepen our knowledge of the exciton Mott transition and pave the route toward the investigation of the exciton phase diagram in a variety of wide-gap insulators.Nuclear β decays as well as the decay of the neutron are well-established low-energy probes of physics beyond the standard model (SM). In particular, with the axial-vector coupling of the nucleon g_A determined from lattice QCD, the comparison between experiment and SM prediction is commonly used to derive constraints on right-handed currents. Further, in addition to the CKM element V_us from kaon decays, V_ud from β decays is a critical input for the test of CKM unitarity. Here, we point out that the available information on β decays can be reinterpreted as a stringent test of lepton flavor universality (LFU). In fact, we find that the ratio of V_us from kaon decays over V_us from β decays (assuming CKM unitarity) is extremely sensitive to LFU violation (LFUV) in W-μ-ν couplings thanks to a CKM enhancement by (V_ud/V_us)^2∼20. From this perspective, recent hints for the violation of CKM unitarity can be viewed as further evidence for LFUV, fitting into the existing picture exhibited by semileptonic B decays and the anomalous magnetic moments of muon and electron. Finally, we comment on the future sensitivity that can be reached with this LFU violating observable and discuss complementary probes of LFU that may reach a similar level of precision, such as Γ(π→μν)/Γ(π→eν) at the PEN and PiENu experiments or even direct measurements of W→μν at an FCC-ee.A beam-normal single-spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable related to the imaginary part of the two-photon exchange process. We report a 2% precision measurement of the beam-normal single-spin asymmetry in elastic electron-proton scattering with a mean scattering angle of θ_lab=7.9° and a mean energy of 1.149 GeV. The asymmetry result is B_n=-5.194±0.067(stat)±0.082 (syst) ppm. NLRP3 inhibitor This is the most precise measurement of this quantity available to date and therefore provides a stringent test of two-photon exchange models at far-forward scattering angles (θ_lab→0) where they should be most reliable.