MSBased HLAII Peptidomics Along with Multiomics Can Help the creation of Upcoming Immunotherapies

From Informatic
Jump to navigation Jump to search

aCIE exposure increased presynaptic glutamate transmission in females but had no effect in males or on GABA transmission in either sex. Additionally, aCIE exposure disrupted male KOR modulation of GABA release, with no effects in females or on glutamate transmission. These data suggest that aCIE produces sex-dependent and long-term changes to BLA physiology and KOR function. This is the first study to examine these persistent adaptations following adolescent alcohol exposure and opens a broad avenue for future investigation into other adolescent ethanol-induced disruptions of these systems.
Dipeptidyl peptidase-4 (DPP-4) has been involved in the pathogenesis of inflammatory bowel diseases (IBD), yet the underlying mechanisms remain inconclusive. The present study aimed to investigate the potential of linagliptin, a potent/selective DPP-4 inhibitor with marked anti-inflammatory actions, to attenuate trinitrobenzene sulfonic acid (TNBS)-evoked colitis in rats; an experimental model of IBD, and the implicated molecular mechanisms. This may add to the clinical utility of linagliptin for the management of patients with coexisting IBD and diabetes mellitus. Notably, no former studies have linked JAK2/STAT3, HMGB1/NF-κB, and Nrf2/HO-1 signaling in TNBS-evoked colitis.
Western blotting and ELISA were used to determine the levels of target signals.
Administration of linagliptin (1.5mg/kg; p.o.) mitigated the colitis severity via diminishing the disease activity index, colon weight/length ratio, and macroscopic scores. Linagliptin also lowered the colonic histologic scores and leukocyte invasion. Notably, linagliptin inhibited the colonic DPP-4 activity and upregulated the expression of intestinotrophic GLP-2 without incurring hypoglycemia in animals. Linagliptin curbed inflammation through the suppression of colonic IL-6, TNF-α, and myeloperoxidase and upregulation of IL-10. It also inhibited the IL-6/JAK2/STAT3 pathway via downregulating p-JAK2/JAK2 and p-STAT3/STAT3 protein expression and HMGB1/RAGE/NF-κB cascade through lowering HMGB1, RAGE, and p-NF-κB p65/NF-κB p65 protein expression. In the context of mucosal oxidative stress, linagliptin diminished lipid peroxides and augmented GSH, GPx, and total antioxidant capacity. It also activated Nrf2/HO-1 pathway via upregulating Nrf2 and HO-1 protein expression.
Linagliptin shows a promise for the management of IBD via targeting IL-6/JAK2/STAT3, HMGB1/RAGE/NF-κB, and Nrf2/HO-1 pathways.
Linagliptin shows a promise for the management of IBD via targeting IL-6/JAK2/STAT3, HMGB1/RAGE/NF-κB, and Nrf2/HO-1 pathways.
Piperine, the major pharmacological ingredient of pepper, can delay the procession of "obesity to diabetes". However, the underlying mechanism remains unclear. This study aims to investigate whether piperine protects against β-cell dysfunction by inhibiting macrophage accumulation and M
-like polarization.
Pre-diabetic model was induced by feeding 60% high-fat diet (HFD) in C57BL/6C mice, piperine (15 or 30mg/kg/day) and rosiglitazone (4mg/kg/day) were given orally for 8weeks. Oral glucose tolerance test (OGTT), insulin tolerance test (ITT), fasting blood glucose (FBG), total cholesterol (TC) and triglyceride (TG) were used to assay the disorder of glycolipid metabolism. CC220 cell line Serum levels of cytokines and insulin were measured by Elisa. Hyperglycemic clamp assay was carried out to evaluate β-cell function. RT-PCR, immunofluorescence and western blot were used to detect the expression of biomarkers associated with macrophage polarization and β-cell dedifferentiation.
Piperine protected against β-cell dysfunction, indicated by the improvement of hyperinsulinemia, OGTT and increased glucose infusion rate (GIR). Piperine dramatically reduced the serum levels of lipopolysaccharide (LPS), interleukin-1β (IL-1β) and Galectin-3 (Gal-3), suppressed the expression of M
-like cytokines (CD11c, IL-1β and Gal-3) in epididymal adipose tissues and islets. Furthermore, piperine partially reversed the down-regulation of Pdx1, inhibited the up-regulation of ALDH1A3 in β-cell, and these effects were closely related to the mTOR/S6/4E-BP1 signal pathway.
Piperine markedly ameliorates the dedifferentiation and dysfunction of β-cell by inhibiting the accumulation and M
-like polarization of macrophages in visceral adipose tissues and islets.
Piperine markedly ameliorates the dedifferentiation and dysfunction of β-cell by inhibiting the accumulation and M1-like polarization of macrophages in visceral adipose tissues and islets.
Brain-derived neurotrophic factor (BDNF) is vital in the pathogenesis of mechanical allodynia with a paucity of reports available regarding diabetic neuropathy pain (DNP). Herein we identified the involvement of BDNF in driving mechanical allodynia in DNP rats via the activation of transient receptor potential canonical 6 (TRPC6) channel.
The DNP rat model was established via streptozotocin (STZ) injection, and allodynia was assessed by paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL). The expression profiles of BDNF and TRPC6 in dorsal root ganglia (DRG) and spinal cord were illustrated by immunofluorescence and Western blotting. Intrathecal administration of K252a or TrkB-Fc was performed to inhibit BNDF/TrkB expression, and respective injection of GsMTX-4, BTP2 and TRPC6 antisense oligodeoxynucleotides (TRPC6-AS) was likewise conducted to inhibit TRPC6 expression in DNP rats. Calcium influx in DRG was monitored by calcium imaging.
The time-dependent increase of BDNF and TRPC6 expression in DRG and spinal cord was observed since the 7th post-STZ day, correlated with the development of mechanical allodynia in DNP rats. Intrathecal administration of K252a, TrkB-Fc, GsMTX-4 and BTP2 prevented mechanical allodynia in DNP rats. Pre-treatment of TRPC6-AS reversed the BDNF-induced pain-like responses in DNP rats rather than the naïve rats. In addition, the TRPC6-AS reversed BDNF-induced increase of calcium influx in DRG neurons in DNP rats.
The intrathecal inhibition of TRPC6 alleviated the BDNF-induced mechanical allodynia in DNP rat model. This finding may validate the application of TRPC6 antagonists as interesting strategy for DNP management.
The intrathecal inhibition of TRPC6 alleviated the BDNF-induced mechanical allodynia in DNP rat model. This finding may validate the application of TRPC6 antagonists as interesting strategy for DNP management.