Look at ParentResearcher Deal on the Vocal Development Sites Job interview

From Informatic
Jump to navigation Jump to search

This method shows excellent linearity of detection in the range of 0.1-500 μg L-1, and ultrasensitivity with low limits of detection of 0.03 μg L-1. The maximum SA residue recovered from sample tissues by using MMIPs was 5.48 μg g-1. MMIP-coupled UPLC-MS/MS quantification of SAs is an accurate and repeatable method for the monitoring of SA accumulation in mouse tissue samples. It also provides an effective strategy for the tracking and quantification of drugs in other biological samples.In order to reduce the toxicity and side effects of anti-tumor drugs and improve their therapeutic effect against cancer, photodynamic and chemical combination therapy has been exploited. However, the complicated preparation and metabolic toxicity of photosensitizer-loaded materials remain major obstacles for bioapplications. In this study, we designed and prepared a specific photosensitizer self-transporting drug-delivery system. First, 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-porphine (TAPP) was modified using specific molecules of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) with a certain antitumor effect, to prepare a specific fluorescent amphiphilic system (TAPP-TPGS). Then, the drug-loaded fluorescence nanomicelle (TAPP-TPGS/PTX) was formed via self-assembly using the amphiphilic system and the anticancer drug paclitaxel (PTX). The carrier material could be used as a drug tracer and cancer therapy reagent to synergistically trace the chemotherapy drug and treat cancers. The biocompatibility and the enhanced antitumor effect of TAPP-TPGS/PTX were confirmed by in vitro and in vivo experiments. To detect the synergistic anticancer effect enhanced by TPGS, TAPP-mPEG synthesized with a similar method as TAPP-TPGS was used for a comparative analysis. The results showed that the excellent synergistic anticancer effect of the TAPP-TPGS/PTX was enhanced due to the introduction of TPGS. Thus, the specific porphyrin self-transporting nanomicelle is a very promising carrier material for applications in biomedicine.Nature utilizes self-assembled protein-based structures as subcellular compartments in prokaryotes to sequester catalysts for specialized biochemical reactions. These protein cage structures provide unique isolated environments for the encapsulated enzymes. Understanding these systems is useful in the bioinspired design of synthetic catalytic organelle-like nanomaterials. The DNA binding protein from starved cells (Dps), isolated from Sulfolobus solfataricus, is a 9 nm dodecameric protein cage making it the smallest known naturally occurring protein cage. It is naturally over-expressed in response to oxidative stress. The small size, natural biodistribution to the kidney, and ability to cross the glomerular filtration barrier in in vivo experiments highlight its potential as a synthetic antioxidant. Cytochrome C (CytC) is a small heme protein with peroxidase-like activity involved in the electron transport chain and also plays a critical role in cellular apoptosis. Here we report the encapsulation of CytC inside the 5 nm interior cavity of Dps and demonstrate the catalytic activity of the resultant Dps nanocage with enhanced antioxidant behavior. The small cavity can accommodate a single CytC and this was achieved through self-assembly of chimeric cages comprising Dps subunits and a Dps subunit to which the CytC was fused. For selective isolation of CytC containing Dps cages, we utilized engineered polyhistidine tag present only on the enzyme fused Dps subunits (6His-Dps-CytC). The catalytic activity of encapsulated CytC was studied using guaiacol and 3,3',5,5'-tetramethylbenzidine (TMB) as two different peroxidase substrates and compared to the free (unencapsulated) CytC activity. The encapsulated CytC showed better pH dependent catalytic activity compared to free enzyme and provides a proof-of-concept model to engineer these small protein cages for their potential as catalytic nanoreactors.Magnetic resonance imaging (MRI) and optical imaging (OI) are attractive for constructing bimodal probes due to their complementary imaging characteristics. The combination of these two techniques could be a useful tool to simultaneously obtain both anatomical and molecular information as well as to significantly improve the accuracy of detection. In this study, we found that β-diketonate-lanthanide complexes, BHHBCB-Ln3+, could covalently bind to proteins to exhibit long-lived and intense luminescence (Ln3+ = Eu3+, τ = 0.52 ms, Φ = 0.40) and remarkably high relaxivity (Ln3+ = Gd3+, r1 = 35.67 mM-1 s-1, r2 = 43.25 mM-1 s-1) with excellent water solubility, stability and biocompatibility. Hence, we conjugated BHHBCB-Ln3+ with a tumor-targetable biomacromolecule, transferrin (Tf), to construct the probes, Tf-BHHBCB-Ln3+, for time-gated luminescence (TGL, Ln3+ = Eu3+) and MR (Ln3+ = Gd3+) imaging of cancerous cells in vitro and in vivo. Apoptosis inhibitor As expected, the as-prepared probes showed high specificity to bind with the transferrin receptor-overexpressed cancerous cells, to enable the probe molecules to be accumulated in these cells. Using Tf-BHHBCB-Ln3+ as probes, the cultured cancerous cells and the tumors in tumor-bearing mice have been clearly visualized by background-free TGL and in vivo MR imaging. The research outcomes suggested the potential of β-diketonate-lanthanide complexes for use in constructing bimodal TGL/MR imaging bioprobes.Photothermal therapy is promising for augmenting cancer therapeutic outcomes in cancer treatment. Diketopyrrolopyrrole (DPP)-conjugated polymer nanoparticles are in focus due to their dual photoacoustic imaging and photothermal therapy functions. Herein, the design and synthesis of three near-infrared absorbing conjugated polymers, named DPP-SO, DPP-SS and DPP-SSe, with heteroatom substitution of the thiophene moiety were developed for a photoacoustic imaging guided photothermal therapy. It was demonstrated that systematically changing only the heteroatom from O to S or Se could apparently adjust the absorption spectrum and energy gap of DPP-conjugated polymers to obtain the most suitable photothermal transduction agents (PTAs) for use in biomedicine. The characterization of photophysical properties proved that the photothermal conversion efficiency and absorption coefficient of DPP-SO nanoparticles under 808 nm irradiation was up to 79.3% and 66.51 L g-1 cm-1, respectively, which were much higher than those of DPP-SS and DPP-SSe nanoparticles.