Computerized recognition of synaptic spouses in a wholebrain Drosophilaelectron microscopy files arranged

From Informatic
Jump to navigation Jump to search

Described here is a Cu-catalyzed [2 + 2 + 1] modular synthesis of full-substituted β-pyrrolinones from simple amines, alkynes, and α-diazo-β-ketoesters. This approach involving the regioselective C-nucleophilic attack of enamines, uncommon C-nucleophilic addition to ketenes, and umpolung of imines enables the direct synthesis of full-substituted β-pyrrolinones, which were hardly constructed by traditional synthetic strategies.Our recently developed Open-Boundary Molecular Mechanics/Coarse Grained (OB-MM/CG) framework predicts ligand poses in important pharmaceutical targets, such as G-protein Coupled Receptors, even when experimental structural information is lacking. The approach, which is based on GROMOS and AMBER force fields, allows for grand-canonical simulations of protein-ligand complexes by using the Hamiltonian Adaptive Resolution Scheme (H-AdResS) for the solvent. Here, we present a key step toward the estimation of ligand binding affinities for their targets within this approach. This is the implementation of the H-AdResS in the GROMACS code. The accuracy of our implementation is established by calculating hydration free energies of several molecules in water by means of alchemical transformations. The deviations of the GROMOS- and AMBER-based H-AdResS results from the reference fully atomistic simulations are smaller than the accuracy of the force field and/or they are in the range of the published results. Importantly, our predictions are in good agreement with experimental data. The current implementation paves the way to the use of the OB-MM/CG framework for the study of large biological systems.Coupled resonators represent a generic model for many physical systems. In this context, a microcantilever is a multimode resonator clamped at one end, and it finds extensive application in high-precision metrology and is expected to be of great potential use in emerging quantum technologies. Here, we explore the microcantilever as a flexible platform for realizing multimode nonlinear interactions. Multimode nonlinear coupling is achieved by (12) internal resonance (IR) and parametric excitation with efficient coherent energy transfer. Specifically, we demonstrate abundant tunable parametric behaviors via frequency and voltage sweeps; these behaviors include mode veering, degenerate four-wave mixing (D4WM) with satellite resonances, partial amplitude suppression, acoustic frequency comb (AFC) generation, mechanically induced transparency (MIT), and normal-mode splitting. The experiments depict a new scheme for manipulating multimode microresonators with IR and parametric excitation.Defects play non-negligible roles in many luminescent processes, where the significant and remarkable influence in the phosphor performance in various ways is observed. A full and clear perception of defects would be beneficial for the further development of the luminescence mechanism and design of phosphors. In this study, the defect-related luminescence in a chlorosilicate phosphor Ca2SiO3Cl2 Eu2+ was deeply studied. Except for the green emission originating from the d-f transition of the Eu2+ ion, a blue emission band with unique sensitivity to temperature and excitation energy was confirmed to be induced by the defects. The defects related to anion vacancies in the material acted as electron traps and luminescence centers simultaneously, which were well-identified by luminescence spectra and theory calculation analysis. This study uncovered the peculiar behavior and action mechanism of defects in the luminescence process and demonstrates a new path to understanding the origin of the luminescence center.A thermal O-to-C [1,3]-rearrangement of α-hydroxy acid derived enol ethers was achieved under mild conditions. The 2-aminothiophenol protection of carboxylic acids facilitates formation of the [1,3] precursor and its thermal rearrangement via stabilization of a radical intermediate. Experimental and theoretical evidence for dissociative radical pair formation, its captodative stability via aminothiophenol, and a unique solvent effect are presented. The aminothiophenol was deprotected from rearrangement products as well as after derivatization to useful synthons.RhIII-catalyzed sp2 C-H cross-coupling of acrylamides with organoboron reactants has been accomplished using a commercially available N-2,6-difluoroaryl acrylamide auxiliary. Sulfopin concentration A broad range of aryl and vinyl boronates as well as a variety of heterocyclic boronates with strong coordinating ability can serve as the coupling partners. This transformation proceeds under moderate reaction conditions with excellent functional group tolerance and high regioselectivity.A highly regio-, diastereo-, and enantioselective trimethylenemethane (TMM) cycloaddition reaction for the rapid assembly of 2-acyl-methylenecyclopentane in an atom-economic fashion is described. This intermolecular protocol allows for facile and divergent access to an array of structurally attractive cyclic adducts. The choice of a robust chiral diamidophosphite ligand, developed by our group, proved to be crucial for the success of this transformation.A copper-based catalytic system has been developed to enable efficient cyclization of ketoxime acetates with o-fluorobenzaldehydes. This protocol offers an efficient method for the synthesis of substituted quinoline derivatives with a broad range of compatible functionalities. The present system also provides a rapid access to synthetically and pharmaceutically useful quinoline-fused polycycles such as benzo[c]acridines.The unsymmetrical biaryls (Ar1-Ar2) produced by the catalytic cross-couplings of aryl halides (Ar1-halo) with aryl metallics (Ar2-M) in the loading ratio of 11 are popular in chemical synthesis. In contrast, there has been less precedence on the same biaryls produced effectively from two normal aryl C-H bonds with equivalent loading. Here, we report that, in a palladium/oxidant/acid catalytic system at room temperature, one arene (Ar1-H, 1 equiv) can highly selectively couple with the other one (Ar2-H, 1 equiv) to afford the target Ar1-Ar2 just by controlling the directing groups and the substituted groups on their phenyl rings. The utility of this one-one cross-coupling is also demonstrated by synthesis of a few bioactive molecules.