An update upon prevention of malaria within travelers

From Informatic
Jump to navigation Jump to search

Anti-acid drugs, proton pump inhibitor (PPI) and histamine-2 blocker (H2-blocker), are commonly prescribed to treat gastrointestinal disorders. These anti-acid drugs alter gut microbiota in the general population, but their effects are not known in hemodialysis patients. Hence, we investigated the microbiota composition in hemodialysis patients treated with PPIs or H2-blocker. Among 193 hemodialysis patients, we identified 32 H2-blocker users, 23 PPI users, and 138 no anti-acid drug subjects. Fecal samples were obtained to analyze the gut microbiome using 16S RNA amplicon sequencing. Differences in the microbial composition of the H2-blocker users, PPI users, and controls were assessed using linear discriminant analysis effect size and the random forest algorithm. The species richness or evenness (α-diversity) was similar among the three groups, whereas the inter-individual diversity (β-diversity) was different between H2-blocker users, PPI users, and controls. Hemodialysis patients treated with H2-blocker and PPIs had a higher microbial dysbiosis index than the controls, with a significant increase in the genera Provetella 2, Phascolarctobacterium, Christensenellaceae R-7 group, and Eubacterium oxidoreducens group in H2-blocker users, and Streptococcus and Veillonella in PPI users. In addition, compared to the H2-blocker users, there was a significant enrichment of the genera Streptococcus in PPI users, as confirmed by the random forest analysis and the confounder-adjusted regression model. In conclusion, PPIs significantly changed the gut microbiota composition in hemodialysis patients compared to H2-blocker users or controls. Importantly, the Streptococcus genus was significantly increased in PPI treatment. These findings caution against the overuse of PPIs.Distinct DNA methylation signatures, related to different prognosis, have been observed across many cancers, including T-cell acute lymphoblastic leukemia (T-ALL), an aggressive hematological neoplasm. learn more By global methylation analysis, two major phenotypes might be observed in T-ALL hypermethylation related to better outcome and hypomethylation, which is a candidate marker of poor prognosis. Moreover, DNA methylation holds more than a clinical meaning. It reflects the replicative history of leukemic cells and most likely different mechanisms underlying leukemia development in these T-ALL subtypes. The elucidation of the mechanisms and aberrations specific to (epi-)genomic subtypes might pave the way towards predictive diagnostics and precision medicine in T-ALL. We present the current state of knowledge on the role of DNA methylation in T-ALL. We describe the involvement of DNA methylation in normal hematopoiesis and T-cell development, focusing on epigenetic aberrations contributing to this leukemia. We further review the research investigating distinct methylation phenotypes in T-ALL, related to different outcomes, pointing to the most recent research aimed to unravel the biological mechanisms behind differential methylation. We highlight how technological advancements facilitated broadening the perspective of the investigation into DNA methylation and how this has changed our understanding of the roles of this epigenetic modification in T-ALL.The epidemic due to the novel coronavirus (SARS-CoV-2) is now a global concern, posing a severe threat to the health of populations. At present, all countries in the world are stepping up the development of vaccines and antiviral agents to prevent the infection and further transmission of SARS-CoV-2. An in-depth investigation of the target organs and pathogenesis regarding SARS-CoV-2 infection will be beneficial for virus therapy. Besides pulmonary injury, SARS-CoV-2 also causes cardiac injury, but the exact mechanisms are unclear. This review summarizes the essential structural characteristics of SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2), describes the cardiac manifestations following SARS-CoV-2 infection, and explores the mechanisms of cardiac injury targeting ACE2 after the viral invasion. We aim to help the timely detection of related symptoms and implementation of therapeutic measures by clinicians for SARS-CoV-2 infection.Background The objective of this paper is to analyze social inequalities in COVID-19 incidence, stratified by age, sex, geographical area, and income in Barcelona during the first two waves of the pandemic. Methods We collected data on COVID-19 cases confirmed by laboratory tests during the first two waves of the pandemic (1 March to 15 July and 16 July to 30 November, 2020) in Barcelona. For each wave and sex, we calculated smooth cumulative incidence by census tract using a hierarchical Bayesian model. We analyzed income inequalities in the incidence of COVID-19, categorizing the census tracts into quintiles based on the income indicator. Results During the two waves, women showed higher COVID-19 cumulative incidence under 64 years, while the trend was reversed after that threshold. The incidence of the disease was higher in some poor neighborhoods. The risk ratio (RR) increased in the poorest groups compared to the richest ones, mainly in the second wave, with RR being 1.67 (95% Credible Interval-CI- 1.41-1.96) in the fifth quintile income group for men and 1.71 (95% CI 1.44-1.99) for women. Conclusion Our results indicate the existence of inequalities in the incidence of COVID-19 in an urban area of Southern Europe.Systemic infection is an important risk factor for the development cognitive impairment and neurodegeneration in older people. Animal experiments show that systemic challenges with live bacteria cause a neuro-inflammatory response, but the effect of age on this response in these models is unknown. Young (2 months) and middle-aged mice (13-14 months) were intraperitoneally challenged with live Escherichia coli (E. coli) or saline. The mice were sacrificed at 2, 3 and 7 days after inoculation; for all time points, the mice were treated with ceftriaxone (an antimicrobial drug) at 12 and 24 h after inoculation. Microglial response was monitored by immunohistochemical staining with an ionized calcium-binding adaptor molecule 1 (Iba-1) antibody and flow cytometry, and inflammatory response by mRNA expression of pro- and anti-inflammatory mediators. We observed an increased microglial cell number and moderate morphologically activated microglial cells in middle-aged mice, as compared to young mice, after intraperitoneal challenge with live E.