Success analysis of nonperiodic activation NPS functionality

From Informatic
Revision as of 09:18, 24 October 2024 by Shapebeam52 (talk | contribs) (Created page with "We review the sampling and results of the radiocarbon dating of the archaeological cloth known as the Shroud of Turin, in the light of recent statistical analyses of both publ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

We review the sampling and results of the radiocarbon dating of the archaeological cloth known as the Shroud of Turin, in the light of recent statistical analyses of both published and raw data. The statistical analyses highlight an inter-laboratory heterogeneity of the means and a monotone spatial variation of the ages of subsamples that suggest the presence of contaminants unevenly removed by the cleaning pretreatments. We consider the significance and overall impact of the statistical analyses on assessing the reliability of the dating results and the design of correct sampling. These analyses suggest that the 1988 radiocarbon dating does not match the current accuracy requirements. Should this be the case, it would be interesting to know the accurate age of the Shroud of Turin. Taking into account the whole body of scientific data, we discuss whether it makes sense to date the Shroud again.We propose a new metric to characterize the complexity of weighted complex networks. Weighted complex networks represent a highly organized interactive process, for example, co-varying returns between stocks (financial networks) and coordination between brain regions (brain connectivity networks). Although network entropy methods have been developed for binary networks, the measurement of non-randomness and complexity for large weighted networks remains challenging. We develop a new analytical framework to measure the complexity of a weighted network via graph embedding and point pattern analysis techniques in order to address this unmet need. We first perform graph embedding to project all nodes of the weighted adjacency matrix to a low dimensional vector space. Next, we analyze the point distribution pattern in the projected space, and measure its deviation from the complete spatial randomness. see more We evaluate our method via extensive simulation studies and find that our method can sensitively detect the difference of complexity and is robust to noise. Last, we apply the approach to a functional magnetic resonance imaging study and compare the complexity metrics of functional brain connectivity networks from 124 patients with schizophrenia and 103 healthy controls. The results show that the brain circuitry is more organized in healthy controls than schizophrenic patients for male subjects while the difference is minimal in female subjects. These findings are well aligned with the established sex difference in schizophrenia.We consider a communication system whereby T-seconds time-limited codewords are transmitted over a W-Hz band-limited additive white Gaussian noise channel. In the asymptotic regime as WT→∞, it is known that the maximal achievable rates with such a scheme converge to Shannon's capacity with the presence of 2WT degrees of freedom. In this work we study the degrees of freedom and the achievable information rates for finite values of WT. We use prolate spheroidal wave functions to obtain an information lossless equivalent discrete formulation and then we apply Polyanskiy's results on coding in the finite block-length regime. We derive upper and lower bounds on the achievable rates and the corresponding degrees of freedom and we numerically evaluate them for sample values of 2WT. The bounds are asymptotically tight and numerical computations show the gap between them decreases as 2WT increases. Additionally, the possible decrease from 2WT in the available degrees of freedom is upper-bounded by a logarithmic function of 2WT.Graph enumeration with given constraints is an interesting problem considered to be one of the fundamental problems in graph theory, with many applications in natural sciences and engineering such as bio-informatics and computational chemistry. For any two integers n≥1 and Δ≥0, we propose a method to count all non-isomorphic trees with n vertices, Δ self-loops, and no multi-edges based on dynamic programming. To achieve this goal, we count the number of non-isomorphic rooted trees with n vertices, Δ self-loops and no multi-edges, in O(n2(n+Δ(n+Δ·minn,Δ))) time and O(n2(Δ2+1)) space, since every tree can be uniquely viewed as a rooted tree by either regarding its unicentroid as the root, or in the case of bicentroid, by introducing a virtual vertex on the bicentroid and assuming the virtual vertex to be the root. By this result, we get a lower bound and an upper bound on the number of tree-like polymer topologies of chemical compounds with any "cycle rank".This paper provides a novel Newtonian-type optimization method for robust adaptive filtering inspired by information theory learning. With the traditional minimum mean square error (MMSE) criterion replaced by criteria like the maximum correntropy criterion (MCC) or generalized maximum correntropy criterion (GMCC), adaptive filters assign less emphasis on the outlier data, thus become more robust against impulsive noises. The optimization methods adopted in current MCC-based LMS-type and RLS-type adaptive filters are gradient descent method and fixed point iteration, respectively. However, in this paper, a Newtonian-type method is introduced as a novel method for enhancing the existing body of knowledge of MCC-based adaptive filtering and providing a fast convergence rate. Theoretical analysis of the steady-state performance of the algorithm is carried out and verified by simulations. The experimental results show that, compared to the conventional MCC adaptive filter, the MCC-based Newtonian-type method converges faster and still maintains a good steady-state performance under impulsive noise. The practicability of the algorithm is also verified in the experiment of acoustic echo cancellation.One of the biggest queries in cognitive sciences is the emergence of consciousness from matter. Modern neurobiological theories of consciousness propose that conscious experience is the result of interactions between large-scale neuronal networks in the brain, traditionally described within the realm of classical physics. Here, we propose a generalized connectionist framework in which the emergence of "conscious networks" is not exclusive of large brain areas, but can be identified in subcellular networks exhibiting nontrivial quantum phenomena. The essential feature of such networks is the existence of strong correlations in the system (classical or quantum coherence) and the presence of an optimal point at which the system's complexity and energy dissipation are maximized, whereas free-energy is minimized. This is expressed either by maximization of the information content in large scale functional networks or by achieving optimal efficiency through the quantum Goldilock effect.