Developing qualitative research layout utilizing nursings disciplinary epistemology

From Informatic
Revision as of 11:41, 23 October 2024 by Farmerdry33 (talk | contribs) (Created page with "Our review summarizes the functional role of ncRNAs in skin cancers and their potential clinical application as biomarkers.<br />This pilot study aimed to identify association...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Our review summarizes the functional role of ncRNAs in skin cancers and their potential clinical application as biomarkers.
This pilot study aimed to identify associations of loneliness and daily alcohol consumption among US adults during the Coronavirus Disease-2019 pandemic.
Participants completed daily assessments for 30 days.
Results suggest people who feel lonelier on average drink more alcohol, however, people who feel lonelier than usual drink less.
Findings highlight the need to disaggregate within- and between-person components of alcohol use.
Findings highlight the need to disaggregate within- and between-person components of alcohol use.Asthma is a chronic inflammatory disease of the airway diagnosed with different endotypes and phenotypes, characterized by airway obstruction in response to allergens, bacterial/viral infections, or pollutants. Several cell types such as the airway epithelial cells, mesenchymal stem cells and different immune cells including dendritic cells (DCs), T and B cells and mast cells play an essential role during the pathobiology of asthma. Extracellular vesicles (EVs) are membranous nanovesicles produced by every cell type that facilitates intercellular communications. EVs contain heterogeneous cargos that primarily depend on the composition or cell type of origin and they can alter the physiological state of the target cells. EVs encompass a wide variety of proteins including Tetraspanins, MHC classes I and II, co-stimulatory molecules, nucleic acids such as RNA, miRNA, piRNA, circRNA, and lipids like ceramides and sphingolipids. Recent literature indicates that EVs play a pivotal role in the pathophysiology of allergic asthma and may potentially be used as a novel biomarker to determine endotypes and phenotypes in severe asthmatics. Based on the prior reports, we speculate that regulation of EVs biogenesis and release might be under the control of circadian rhythms. Thus, circadian rhythms may influence the composition of the EVs, which alter the microenvironment that results in the induction of an immune-inflammatory response to various environmental insults or allergens such as air pollutants, ozone, diesel exhaust particles, pollens, outdoor molds, environmental tobacco smoke, etc. https://www.selleckchem.com/products/sotrastaurin-aeb071.html In this mini-review, we summarize the recent updates on the novel role of EVs in the pathogenesis of asthma, and highlight the link between circadian rhythms and EVs that may be important to identify molecular mechanisms to target during the pathogenesis of chronic inflammatory lung disease such as asthma.Extracellular vesicles (EVs) have been recognized as an evolving biomarker within the liquid biopsy family. While carrying both host cell proteins and different types of RNAs, EVs are also present in sufficient quantities in biological samples to be tested using many molecular analysis platforms to interrogate their content. However, because EVs in biological samples are comprised of both disease and non-disease related EVs, enrichment is often required to remove potential interferences from the downstream molecular assay. Most benchtop isolation/enrichment methods require > milliliter levels of sample and can cause varying degrees of damage to the EVs. In addition, some of the common EV benchtop isolation methods do not sort the diseased from the non-diseased related EVs. Simultaneously, the detection of the overall concentration and size distribution of the EVs is highly dependent on techniques such as electron microscopy and Nanoparticle Tracking Analysis, which can include unexpected variations and biases as well as complexity in the analysis. This review discusses the importance of EVs as a biomarker secured from a liquid biopsy and covers some of the traditional and non-traditional, including microfluidics and resistive pulse sensing, technologies for EV isolation and detection, respectively.Supply chain management is an interconnected problem that requires the coordination of various decisions and elements across long-term (i.e., supply chain structure), medium-term (i.e., production planning), and short-term (i.e., production scheduling) operations. Traditionally, decision-making strategies for such problems follow a sequential approach where longer-term decisions are made first and implemented at lower levels, accordingly. However, there are shared variables across different decision layers of the supply chain that are dictating the feasibility and optimality of the overall supply chain performance. Multi-level programming offers a holistic approach that explicitly accounts for this inherent hierarchy and interconnectivity between supply chain elements, however, requires more rigorous solution strategies as they are strongly NP-hard. In this work, we use the DOMINO framework, a data-driven optimization algorithm initially developed to solve single-leader single-follower bi-level mixed-integer optimization problems, and further develop it to address integrated planning and scheduling formulations with multiple follower lower-level problems, which has not received extensive attention in the open literature. By sampling for the production targets over a pre-specified planning horizon, DOMINO deterministically solves the scheduling problem at each planning period per sample, while accounting for the total cost of planning, inventories, and demand satisfaction. This input-output data is then passed onto a data-driven optimizer to recover a guaranteed feasible, near-optimal solution to the integrated planning and scheduling problem. We show the applicability of the proposed approach for the solution of a two-product planning and scheduling case study.Cellular senescence has been found to have beneficial roles in development, tissue regeneration, and wound healing. However, in aging senescence increases, and the ability to properly repair and heal wounds significantly declines across multiple tissues. This age-related accumulation of senescent cells may cause loss of tissue homeostasis leading to dysregulation of normal and timely wound healing processes. The delays in wound healing of aging have widespread clinical and economic impacts, thus novel strategies to improve wound healing in aging are needed and targeting senescence may be a promising area.The rapid adoption of electronic health records (EHRs) systems has made clinical data available in electronic format for research and for many downstream applications. Electronic screening of potentially eligible patients using these clinical databases for clinical trials is a critical need to improve trial recruitment efficiency. Nevertheless, manually translating free-text eligibility criteria into database queries is labor intensive and inefficient. To facilitate automated screening, free-text eligibility criteria must be structured and coded into a computable format using controlled vocabularies. Named entity recognition (NER) is thus an important first step. In this study, we evaluate 4 state-of-the-art transformer-based NER models on two publicly available annotated corpora of eligibility criteria released by Columbia University (i.e., the Chia data) and Facebook Research (i.e.the FRD data). Four transformer-based models (i.e., BERT, ALBERT, RoBERTa, and ELECTRA) pretrained with general English domain corpora vs. those pretrained with PubMed citations, clinical notes from the MIMIC-III dataset and eligibility criteria extracted from all the clinical trials on ClinicalTrials.gov were compared. Experimental results show that RoBERTa pretrained with MIMIC-III clinical notes and eligibility criteria yielded the highest strict and relaxed F-scores in both the Chia data (i.e., 0.658/0.798) and the FRD data (i.e., 0.785/0.916). With promising NER results, further investigations on building a reliable natural language processing (NLP)-assisted pipeline for automated electronic screening are needed.The ability to make robust inferences about the dynamics of biological macromolecules using NMR spectroscopy depends heavily on the application of appropriate theoretical models for nuclear spin relaxation. Data analysis for NMR laboratory-frame relaxation experiments typically involves selecting one of several model-free spectral density functions using a bias-corrected fitness test. Here, advances in statistical model selection theory, termed bootstrap aggregation or bagging, are applied to 15N spin relaxation data, developing a multimodel inference solution to the model-free selection problem. The approach is illustrated using data sets recorded at four static magnetic fields for the bZip domain of the S. cerevisiae transcription factor GCN4.The evolution of nuclear spin magnetization during a radiofrequency pulse in the absence of relaxation or coupling interactions can be described by three Euler angles. The Euler angles in turn can be obtained from the solution of a Riccati differential equation; however, analytic solutions exist only for rectangular and chirp pulses. The Homotopy Analysis Method is used to obtain new approximate solutions to the Riccati equation for shaped radiofrequency pulses in NMR spectroscopy. The results of even relatively low orders of approximation are highly accurate and can be calculated very efficiently. The results are extended in a second application of the Homotopy Analysis Method to represent relaxation as a perturbation of the magnetization trajectory calculated in the absence of relaxation. The Homotopy Analysis Method is powerful and flexible and is likely to have other applications in magnetic resonance.Vascular aging, aortic stiffness and hypertension are mechanistically interrelated. The perspective presented here will focus mainly on the molecular mechanisms of age-associated increases in the stiffness of the vascular smooth muscle cell (VSMC). This review will highlight the mechanisms by which the VSMC contributes to disorders of vascular aging. Distinct functional sub-components of the vascular cell and the molecular mechanisms of the protein-protein interactions, signaling mechanisms and intracellular trafficking processes in the setting of the aging aorta will be detailed.Margin of stability (MOS) is considered a measure of mechanical gait stability. Due to broad application of treadmills in gait assessment experiments, we aimed to determine if walking on a treadmill vs. overground would affect MOS during three speed-matched conditions. Eight healthy young participants walked on a treadmill and overground at Slow, Preferred, and Fast speed-matched conditions. The mean and variability (standard deviation) of the MOS in anterior-posterior and mediolateral directions at heel contact were calculated. Anterior-posterior and mediolateral mean MOS values decreased with increased speed for both overground and treadmill; although mediolateral mean MOS was always wider on the treadmill compared to overground. Due to lack of optic flow and different proprioceptive inputs during treadmill walking, subjects may employ strategies to increase their lateral stability on treadmill compared to overground. Anterior-posterior MOS variability increased with speed overground, while it did not change on treadmill, which might be due to the fixed speed of treadmill. Whereas, lateral variability on both treadmill and overground was U-shaped. Walking at preferred speed was less variable (may be interpreted as more stable) laterally, compared to fast and slow speeds. Caution should be given when interpreting MOS between modes and speeds of walking. As sagittal plane walking is functionally unstable, this raises the consideration as to the meaningfulness of using MOS as a global measure of gait stability in this direction.