Thrombin incapacitated polydopaminediatom biosilica for successful lose blood control

From Informatic
Revision as of 11:04, 22 October 2024 by Hockeydrink4 (talk | contribs) (Created page with "F. nucleatum is closely related to the pT stage and clinical stage of ESCC. The abundance of F. nucleatum and tumor mutation burden may be used in combination as a potential m...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

F. nucleatum is closely related to the pT stage and clinical stage of ESCC. The abundance of F. nucleatum and tumor mutation burden may be used in combination as a potential method to predict metastasis in ESCC.
F. nucleatum is closely related to the pT stage and clinical stage of ESCC. The abundance of F. nucleatum and tumor mutation burden may be used in combination as a potential method to predict metastasis in ESCC.
Drug repositioning has caught the attention of scholars at home and abroad due to its effective reduction of the development cost and time of new drugs. However, existing drug repositioning methods that are based on computational analysis are limited by sparse data and classic fusion methods; thus, we use autoencoders and adaptive fusion methods to calculate drug repositioning.
In this study, a drug repositioning algorithm based on a deep autoencoder and adaptive fusion was proposed to mitigate the problems of decreased precision and low-efficiency multisource data fusion caused by data sparseness. Specifically, a drug is repositioned by fusing drug-disease associations, drug target proteins, drug chemical structures and drug side effects. First, drug feature data integrated by drug target proteins and chemical structures were processed with dimension reduction via a deep autoencoder to characterize feature representations more densely and abstractly. Then, disease similarity was computed using drug-disease association data, while drug similarity was calculated with drug feature and drug-side effect data. Predictions of drug-disease associations were also calculated using a top-k neighbor method that is commonly used in predictive drug repositioning studies. Finally, a predicted matrix for drug-disease associations was acquired after fusing a wide variety of data via adaptive fusion. Based on experimental results, the proposed algorithm achieves a higher precision and recall rate than the DRCFFS, SLAMS and BADR algorithms with the same dataset.
The proposed algorithm contributes to investigating the novel uses of drugs, as shown in a case study of Alzheimer's disease. Therefore, the proposed algorithm can provide an auxiliary effect for clinical trials of drug repositioning.
The proposed algorithm contributes to investigating the novel uses of drugs, as shown in a case study of Alzheimer's disease. Therefore, the proposed algorithm can provide an auxiliary effect for clinical trials of drug repositioning.
To identify amino acids that can predict risk of 90-day mortality in patients with acute dyspnea.
Plasma levels of nine amino acids were analyzed 663 adult patients admitted to the Emergency Department (ED) with acute dyspnea. Cox proportional hazards models were used to examine the relation between amino acid levels and the risk of 90-day mortality.
Eighty patients (12.1%) died within 90 days of admission. An "Amino Acid Mortality Risk Score" (AMRS), summing absolute plasma levels of glycine, phenylalanine and valine, demonstrated that among the patients belonging to quartile 1 (Q1) of the AMRS, only 4 patients died, compared to 44 patients in quartile 4. Using Q1 of the AMRS as reference, each increment of 1 SD in the AMRS was associated with a hazard ratio (HR) of 2.15 for 90-day mortality, and the HR was > 9 times higher in Q4.
Glycine, phenylalanine and valine are associated with a risk of 90-day mortality in patients admitted to the ED for acute dyspnea, suggesting that these amino acids may be useful in risk assessments.
Glycine, phenylalanine and valine are associated with a risk of 90-day mortality in patients admitted to the ED for acute dyspnea, suggesting that these amino acids may be useful in risk assessments.
Generating high-quality de novo genome assemblies is foundational to the genomics study of model and non-model organisms. In recent years, long-read sequencing has greatly benefited genome assembly and scaffolding, a process by which assembled sequences are ordered and oriented through the use of long-range information. Long reads are better able to span repetitive genomic regions compared to short reads, and thus have tremendous utility for resolving problematic regions and helping generate more complete draft assemblies. JAK inhibitor Here, we present LongStitch, a scalable pipeline that corrects and scaffolds draft genome assemblies exclusively using long reads.
LongStitch incorporates multiple tools developed by our group and runs in up to three stages, which includes initial assembly correction (Tigmint-long), followed by two incremental scaffolding stages (ntLink and ARKS-long). Tigmint-long and ARKS-long are misassembly correction and scaffolding utilities, respectively, previously developed for linked reads, thng draft assemblies using long reads, we expect LongStitch to benefit a wide variety of de novo genome assembly projects. The LongStitch pipeline is freely available at https//github.com/bcgsc/longstitch .
Optical maps record locations of specific enzyme recognition sites within long genome fragments. This long-distance information enables aligning genome assembly contigs onto optical maps and ordering contigs into scaffolds. The generated scaffolds, however, often contain a large amount of gaps. To fill these gaps, a feasible way is to search genome assembly graph for the best-matching contig paths that connect boundary contigs of gaps. The combination of searching and evaluation procedures might be "searching followed by evaluation", which is infeasible for long gaps, or "searching by evaluation", which heavily relies on heuristics and thus usually yields unreliable contig paths.
We here report an accurate and efficient approach to filling gaps of genome scaffolds with aids of optical maps. Using simulated data from 12 species and real data from 3 species, we demonstrate the successful application of our approach in gap filling with improved accuracy and completeness of genome scaffolds.
Our approach apicantly increasing searching efficiency.
Proline can promote growth of plants by increasing photosynthetic activity under both non-stress and abiotic stress conditions. However, its role in non-stressed conditions is least studied. An experiment was conducted to assess as to whether increase in growth of wheat due to seed priming with proline under non-stress condition was associated with proline-induced changes in photosystem II (PSII) activity. Seeds of four wheat varieties (S-24, Sehar-06, Galaxy-13, and Pasban-90) were primed with different concentrations of proline (0, 5, 15 and 25 mM) for 12 h and allowed to grow under normal conditions. Biomass accumulation and photosynthetic performance, being two most sensitive features/indicators of plant growth, were selected to monitor proline modulated changes.
Seed priming with proline increased the fresh and dry weights of shoots and roots, and plant height of all four wheat varieties. Maximum increase in growth attributes was observed in all four wheat varieties at 15 mM proline. Maximum growth in wheat varieties, however, its translation in growth improvement depends on potential of processing of absorbed light energy by electron acceptors of electron transport chain, particularly those present at PSI end.
Seed priming with proline improved the growth of wheat varieties, which depends on type of variety and concentration of proline applied. Seed priming with proline significantly changed the PSII activity in wheat varieties, however, its translation in growth improvement depends on potential of processing of absorbed light energy by electron acceptors of electron transport chain, particularly those present at PSI end.
In angiosperms, phenotypic variation of floral organs is often considered as the traditional basis for the evolutionary relationship of different taxonomic groups above the species level. However, little is known about that at or below the species level. Here, we experimentally tested the phenotypic variation of Malus floral organs using combined methods of intraspecific uniformity test, interspecific distinctness analysis, principal component analysis, Pearson correlation analysis, and Q-type cluster analysis. The ancestor-inclined distribution characteristic analysis of Malus species and cultivars floral attributes was also carried out, so as to explore its taxonomic significance.
15/44 phenotypic traits (e.g., flower shape, flower type, flower diameter, ...) were highly consistent, distinguishable, and independent and could be used as the basis for Malus germplasm taxonomy. The studied 142 taxa were divided into two groups (A, B) and five sub-groups (A
, A
, B
, B
, B
), with significantly variable floral phenotypic attributes between groups and within sub-groups. Malus natural species were relatively clustered in the same section (series) while homologous cultivars showed evidence of ancestor-inclined distribution characteristics. However, no significant correlation between the evolutionary order of sections (Sect. Docyniopsis → Sect. Chloromeles → Sect. Sorbomalus → Sect. Eumalus) and group/sub-groups (B
 → B
 → B
 → A).
Phenotypic variation of floral organs could better explore the genetic relationship between Malus taxa. The findings improved our cognition of floral phenotypic variation taxonomic significance under the species level.
Phenotypic variation of floral organs could better explore the genetic relationship between Malus taxa. The findings improved our cognition of floral phenotypic variation taxonomic significance under the species level.
Members of the basic helix-loop-helix (bHLH) transcription factor family perform indispensable functions in various biological processes, such as plant growth, seed maturation, and abiotic stress responses. However, the bHLH family in foxtail millet (Setaria italica), an important food and feed crop, has not been thoroughly studied.
In this study, 187 bHLH genes of foxtail millet (SibHLHs) were identified and renamed according to the chromosomal distribution of the SibHLH genes. Based on the number of conserved domains and gene structure, the SibHLH genes were divided into 21 subfamilies and two orphan genes via phylogenetic tree analysis. According to the phylogenetic tree, the subfamilies 15 and 18 may have experienced stronger expansion in the process of evolution. Then, the motif compositions, gene structures, chromosomal spread, and gene duplication events were discussed in detail. A total of sixteen tandem repeat events and thirty-eight pairs of segment duplications were identified in bHLH family ofntified 187 SibHLH genes in foxtail millet and further analysed the evolution and expression patterns of the encoded proteins. The findings provide a comprehensive understanding of the bHLH family in foxtail millet, which will inform further studies on the functional characteristics of SibHLH genes.
Shivering is known to be a frequent complication in patients undergoing surgery under neuraxial anesthesia with incidence of 40-70%. Although many pharmacological agents have been used to treat or prevent postspinal anesthesia shivering (PSAS), the ideal treatment wasn't found. This study evaluated the efficacy of paracetamol and dexamethasone to prevent PSAS in patients undergoing lower abdominal and lower limb surgeries.
Three hundred patients scheduled for surgeries under spinal anesthesia (SA) were allocated into three equal groups to receive a single preoperative dose of oral paracetamol 1 g (P group), dexamethasone 8 mg intravenous infusion (IVI) in 100 ml normal saline (D group) or placebo (C group), 2 h preoperatively, in a randomized, double-blind trial. The primary endpoint was the incidence of clinically significant PSAS. Secondary endpoints included shivering score, the change in hemodynamics, adverse events (e.g., nausea, vomiting and pruritis) and patients` satisfaction.
Clinically significant PSAS was recorded as (15%) in P group, (40%) in D group and (77%) in C group (P < 0.